Classification of Imbalanced Data Using Synthetic Over-Sampling Techniques

نویسندگان

  • Peng Jun Huang
  • Nicolas Christou
  • Frederic Paik Schoenberg
  • Yingnian Wu
چکیده

of the Thesis Classification of Imbalanced Data Using Synthetic Over-Sampling Techniques

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving Imbalanced data classification accuracy by using Fuzzy Similarity Measure and subtractive clustering

 Classification is an one of the important parts of data mining and knowledge discovery. In most cases, the data that is utilized to used to training the clusters is not well distributed. This inappropriate distribution occurs when one class has a large number of samples but while the number of other class samples is naturally inherently low. In general, the methods of solving this kind of prob...

متن کامل

CUSBoost: Cluster-based Under-sampling with Boosting for Imbalanced Classification

Class imbalance classification is a challenging research problem in data mining and machine learning, as most of the real-life datasets are often imbalanced in nature. Existing learning algorithms maximise the classification accuracy by correctly classifying the majority class, but misclassify the minority class. However, the minority class instances are representing the concept with greater in...

متن کامل

Learning Classifiers from Imbalanced, Only Positive and Unlabeled Data Sets

In this report, I presented my results to the tasks of 2008 UC San Diego Data Mining Contest. This contest consists of two classification tasks based on data from scientific experiment. The first task is a binary classification task which is to maximize accuracy of classification on an evenly-distributed test data set, given a fully labeled imbalanced training data set. The second task is also ...

متن کامل

Analysis of imbalanced data set problem: The case of churn prediction for telecommunication

Class-imbalanced datasets are common in the field of mobile Internet industry. We tested three kinds of feature selection techniques-Random Forest (RF), Relative Weight (RW) and Standardized Regression Coefficients (SRC); three kinds of balance methods-over-sampling (OS), under-sampling (US) and synthetic minority over-sampling (SMOTE); a widely used classification method-RF. The combined model...

متن کامل

Blending Propensity Score Matching and Synthetic Minority Over-sampling Technique for Imbalanced Classification

Real world data sets often contain disproportionate sample sizes of observed groups making the task of prediction algorithms very difficult. One of the many ways to combat inherit bias from class imbalance data is to perform re-sampling. In this paper we discuss two popular re-sampling approaches proposed in literature, Synthetic Minority Over-sampling Technique (SMOTE) and Propensity Score Mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015